Synthesis and reactions of aminooxy carbene complexes of rhenium

Shian-Jy Wang and Robert J. Angelici

Department of Chemistry, Iowa State University, Ames, Iowa 50011 (U.S.A.) (Received February 1st, 1988)

Abstract

The reaction of Re(CO), Br and HNCH₂CH₂, in the presence of Br⁻, gives the aminooxycarbene complex cis-Re(CO)₄(Br)(=COCH₂CH₂NH) (I) at room temperature, but fac-Re(CO)₃(Br)(=COCH₂CH₂NH)₂ (II) is obtained in refluxing $CH_{3}CN$. Refluxing I with PPh₃ in toluene gives fac-Re(CO)₃(PPh₃)(Br)(=COCH₂) CH_2NH (III). Both I and III are deprotonated by n-BuLi to give the imine complexes, $Re(CO)_4(Br)(C=NCH_2CH_2O)^-$ Li⁺ and $Re(CO)_3(PPh_3)(Br)(-C=$ $NCH_2CH_2O)^-$ Li⁺, respectively, whose nitrogen atoms are methylated with Me₃O⁺ to yield the N-methyl carbenes, $Re(CO)_4(Br)(=COCH_2CH_2NMe)$ (V) and $Re(CO)_{1}(Br)(PPh_{2}) = COCH_{1}CH_{2}NMe$ (IV). The reaction of V with MeLi yields $Re(CO)_4 = COCH_2CH_2NMe)^- Li^+$ which then reacts with MeI to generate the carbene alkyl compound $Re(CO)_4(CH_3)$ (=COCH₂CH₂NMe) (VI). Upon reaction with potassium hydrotris(1-pyrazolyl)borate, KHB(pz)₃, I yields $fac-[\eta^2-HB(pz)_3]$ $Re(CO)_3$ (=COCH₂CH₂NH) (VII), in which the HB(pz)₃ is only bidentate. Under UV photolysis VII loses a CO thereby allowing the third pyrazolyl group to coordinate in $[\eta^3$ -HB(pz)] Re(CO) (=COCH2CH2NH) (VIII). All of the new compounds are characterized by their IR, ¹H NMR, and ¹³C NMR spectra.

Introduction

Our group has reported the synthesis of a number of transition metal complexes containing cyclic dioxy-, aminooxy-, aminothio-, and dithio-carbene ligands [1-4]. The aminooxycarbene complexes were produced by the halide-catalyzed reaction of transition metal carbonyls with aziridine according to eq. 1.

$$M - C \equiv O + HNCH_2CH_2 \xrightarrow{X^-} M \equiv C \begin{pmatrix} O \\ N \\ H \end{pmatrix}$$
(1)

 $(M = Fe(CO)_4, Re(CO)_4X (X = Cl, Br, I), Mn(CO)_4X (X = Cl, Br, I), CpFe(CO)_2^+, CpMn(CO)(NO)^+, CpRu(CO)_2^+, and CpFe(PPh_3)(CO)^+)$

Experimental

General procedures

All reactions and manipulations were performed using standard Schlenk techniques under prepurified N_2 . Unless noted otherwise, reagent grade chemicals were used without further purification. Methylene chloride, hexanes and acetonitrile were distilled from CaH₂ and stored under N_2 over type 4Å molecular sieves. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium benzophenone ketyl under N_2 .

The starting compounds $\text{Re}(\text{CO})_5 \text{Br}$ [5] and $\text{Re}(\text{CO})_4(\text{Br})(=\overline{\text{COCH}_2\text{CH}_2\text{NH}})$ (I) [2] were prepared as reported in the literature. Aziridine [6] $(\overline{\text{CH}_2\text{CH}_2\text{NH}})$ was distilled and stored over KOH before use. Schlenk flasks used in reactions of n-BuLi or CH₃Li were dried in an oven at 120 °C overnight prior to use and then cooled in a dessicator flushed with N₂ [7].

Infrared spectra were recorded on a Perkin–Elmer 681 instrument. ¹H and ${}^{13}C{}^{1}H$ NMR spectra were recorded on a Nicolet 300 MHz spectrometer at room temperature. Cr(acac)₃ was added to the solutions to reduce ${}^{13}C$ NMR data collection times. Melting points (uncorrected) of the compounds were determined in air on a Thomas Hoover capillary melting-point apparatus. Electron impact mass spectra were obtained using a Finnigan 4000/GC–MS. Microanalyses were performed by Galbraith Laboratories, Knoxville, TN.

$fac-Re(CO)_3(Br)(=COCH_2CH_2NH)_2$ (II)

To a mixture of 0.50 g (1.2 mmol) of Re(CO)₅Br and 0.51 g (2.5 mmol) of BrCH₂CH₂NH₂·HBr in 20 ml of CH₃CN was added 0.16 ml (3.1 mmol) of aziridine. After being refluxed under N₂ for 5 h, the reaction was complete according to the IR spectrum. The reaction mixture was taken to dryness under vacuum. The yellow residue was dissolved in 20 ml of CH₂Cl₂. After filtering through anhydrous MgSO₄, the CH₂Cl₂ solution was concentrated and 30 ml of hexanes was added. It was stored at -20° C overnight to generate yellow microcrystals. Yield: 0.46 g (76%). M.p. 124–127 °C. Anal. Found: C, 21.92; H, 1.94; N, 5.48. C₉H₁₀BrN₂O₅Re calcd.: C, 21.95; H, 2.03; N, 5.69%. Mass spectrum: m/e (rel. intensity, probable assignment): 491.9 (3.6, M^+); 463.9 (3.56, $(M - CO)^+$); 435.9 $(7.24, (M - 2CO)^+)$; 408.0 $(1.48, (M - 3CO)^+)$; 336.9 $(14.2, \text{Re(Br)}(\text{COCH}_2\text{CH}_2\text{NH})^+)$; 308.9 (16.4, Re(Br)(CH₂CH₂NH)⁺); 71.0 (100, COCH₂CH₂NH⁺).

$fac-Re(CO)_{3}(PPh_{3})(Br)(=\overline{COCH_{2}CH_{2}NH})$ (111)

A mixture of PPh₃ (0.087 g, 0.33 mmol) and I (0.15 g, 0.33 mmol) in 20 ml of toluene was refluxed under N₂ for 15 min. The solvent was removed under vacuum. The colorless residue was extracted with CH_2Cl_2 , and hexanes were added until a cloudy solution was observed. The solution was stored overnight at -20 °C to give white crystals. Yield: 0.22 g (96%). M.p. 193 °C (decomp.). Anal. Found: C, 42.03;

$fac-Re(CO)_3(PPh_3)(Br)[=\overline{COCH_2CH_2N(CH_3)}]$ (IV)

A slight excess of n-BuLi (0.30 ml of 2.4 M n-BuLi in hexane, 0.72 mmol) was injected into a solution of 0.46 g (0.68 mmol) of Re(CO)₃(PPh₃)(Br)(=COCH₂) $\overline{CH_2NH}$ (III) in 50 ml of freshly distilled THF at $-78^{\circ}C$ to generate the deprotonated imine complex, $Re(CO)_{3}(PPh_{3})(Br)(-C=NCH_{2}CH_{2}O)^{-}$ Li⁺. At -78° C, 0.15 g (0.72 mmol) of Me₃O⁺ PF₆⁻ was added to the yellow solution. After stirring for 5 h at room temperature, the mixture was filtered through anhydrous $MgSO_4$, and then the solvent was removed under vacuum. The yellow residue was chromatographed on a silica gel column (2.5×15 cm) using CH₂Cl₂ as the eluent to give a colorless solution. The solvent was removed under vacuum. Colorless crystals of the product were obtained from CH_2Cl_2 /hexanes at -20 °C. Yield; 0.37 g (78%). M.p. 97-99°C. Anal. Found: C, 42.19; H, 3.14; N, 1.75. C₂₅H₂₂BrNO₄PRe · 0.1 CH₂Cl₂ calcd.: C, 42.66; H, 3.12; N, 1.98%. Mass spectrum: m/e (rel. intensity, probable assignment): 696.9 (2.0, M^+); 668.9 (6.0, $(M - CO)^+$); 641.0 (8.0, $(M - 2CO)^+$); 612.9 (2.0, $(M - 3CO)^+$); 434.9 (17, Re(CO)₃(Br) $(=COCH_2CH_2NMe)^+$; 406.9 (32, Re(CO)₂(Br)(=COCH₂CH₂NMe)^+); 262.1 (100, PPh₃).

$cis-Re(CO)_4(Br) = COCH_2CH_2N(CH_3)$ (V)

One equivalent of n-BuLi (0.30 ml, 2.4 M of n-BuLi in hexanes, 0.72 mmol) was injected into a 50 ml THF solution of 0.32 g (0.72 mmol) of $Re(CO)_4(Br) = COCH_2$ - $\overline{CH_2}NH$) at $-78^{\circ}C$. Keeping the temperature at $-78^{\circ}C$, 0.15 g (0.72 mmol) of $Me_3O^+ PF_6^-$ was added. After the solution was allowed to reach room temperature, it was stirred for 2 h. The pale yellow solution was taken to dryness, and the residue was chromatographed on a silica gel column (2.5×16 cm). The first band (pale yellow) which was eluted with 1/1 CH₂Cl₂/hexanes gave a minor product which was possibly $Re(CO)_4(CH_3)$ (=COCH₂CH₂NH). The second band (pale yellow) eluted with 2/1 CH₂Cl₂/hexanes and contained compound V. The latter solution was evaporated under vacuum to yield a pale yellow powder, which was recrystallized from CH_2Cl_2 /hexanes at -20 °C to give pale yellow crystals of Re(CO)₄(Br)[=COCH₂CH₂N(CH₃)]. Yield: 0.10 g (32%). M.p. 129-132°C. Anal. Found: C, 20.87; H, 1.60; N, 2.99. C₈H₇BrNO₆Re calcd.; C, 20.73; H, 1.51; N, 3.02%. Mass spectrum: m/e (rel. intensity, probable assignment): 462.9 (79.4, M^+); 434.9 (70.3, $(M - CO)^+$); 406.9 (100, $(M - 2CO)^+$); 378.9 (14.4, $(M - 3CO)^+$); 350.9 (3.71, $(M - 4CO)^+$), 323.0 (5.52, Re(Br)(CH₂CH₂NMe)⁺).

$cis-Re(CO)_4(CH_3)$ [= $COCH_2CH_2N(CH_3)$] (VI)

A slight excess of CH₃Li (0.20 ml of 1.4 M CH₃Li in Et₂O, 0.28 mmol) was injected into a 30 ml THF solution of Re(CO)₄(Br)[=COCH₂CH₂N(CH₃)] (V) (0.13 g, 0.27 mmol) at -78° C, and then excess CH₃I (0.10 ml, 1.6 mmol) was added. After being stirred at room temperature for 5 h, the mixture was taken to dryness under vacuum at 0°C because of the high volatility of the product. The yellow oily residue was chromatographed on a silica gel column (2.5 × 10 cm). The colorless band was eluted with $1/1 \text{ CH}_2\text{Cl}_2$ /hexanes, and the solution was evaporated under vacuum at 0°C to generate pure white solid VI. Yield: 0.070 g (64%). M.p. 119–120°C. Anal. Found: C, 27.31; H, 2.80; N, 3.38. C₉H₁₀NO₅Re calcd.: C, 27.12; H, 2.51; N, 3.52%. Mass spectrum: m/e (rel. intensity, probable assignment): 399.0 (22.2, M^+); 384.0 (100, $(M - \text{CH}_3)^+$); 356 (73.5, $(M - \text{CH}_3 - \text{CO})^+$); 328 (51.5, $(M - \text{CH}_3 - 2\text{CO})^+$); 313.0 (52.3, Re(CO)₂(=COCH₂CH₂N)⁺); 300.0 (22.9, $(M - \text{CH}_3 - 3\text{CO})^+$); 272.0 (6.11, $(M - \text{CH}_3 - 4\text{CO})^+$).

$fac-[\eta^2 - HB(pz)_3]Re(CO)_3(=COCH_2CH_2NH)$ (VII)

A solution of 0.090 g (0.34 mmol) of potassium hydrotris(pyrazolyl)borate, KHB(pz)₃, and 0.15 g (0.34 mmol) of Re(CO)₄(Br)(=COCH₂CH₂NH) (I) in 40 ml of THF was refluxed and stirred under N₂ for 18 h. A colorless solution and white precipitate were obtained. The mixture was filtered through anhydrous MgSO₄, and the solvent was removed under vacuum. The white residue was recrystallized from CH₂Cl₂/ hexanes at -20° C. Colorless crystals were obtained. Yield: 0.10 g (55%). Anal. Found: C, 32.63; H, 3.00; N, 17.58. C₁₅H₁₅BN₇O₄Re calcd.: C, 32.49; H, 2.71; N, 17.69%. Mass spectrum: (No parent ion (M^+) peak was observed at 555 (for the most intense peak which contains ¹¹B and ¹⁸⁷Re isotopes), but it did show peaks due to its fragments.) m/e (rel. intensity, probable assignment): 527.4 (12.8, $(M - CO)^+$); 499.4 (1.9, $(M - 2CO)^+$); 484.3 (26.3, $(M - CH_2CH_2NH)^+$); 400.3 (33.9, HB(pz)₃Re⁺); 68.0 (100, C₃H₄N₂⁼).

$[\eta^3 - HB(pz)_3]Re(CO)_2(=COCH_2CH_2NH)$ (VIII)

A solution of 0.26 g (0.47 mmol) of $[\eta^2$ -HB(pz)₃]Re(CO)₃(=COCH₂CH₂NH) in 35 ml of THF was photolyzed in a quartz tube at λ 254 nm for 18 h when the reaction was complete (IR evidence). A pale brown solution was obtained. The solvent was removed under vacuum and the residue was chromatographed on a silica gel column (2.5 × x10 cm). A pale yellow band containing the product was eluted with 2/1 CH₂Cl₂/hexanes. The solution was taken to dryness. Pale yellow microcrystals were obtained by recrystallization from CH₂Cl₂/hexanes at -20°C. Yield: 0.060 g (23%). M.p. 202°C (decomp.). Anal. Found: C, 31.58; H, 2.83; N, 18.07. C₁₄H₁₅BN₇O₃Re · 0.06 CH₂Cl₂ calcd.: C, 31.77; H, 2.85; N, 18.45%. Mass spectrum: *m/e* (rel. intensity, probable assignment): 527.1 (100, *M*⁺); 499.1 (5.85, (*M* - CO)⁺); 456.0 (5.11, HB(pz)₃Re(CO)₂⁺); 443.1 (26.6, (*M* - 3CO)⁺); 415.1 (31.8, HB(pz)₃Re(NH)⁺); 400.1 (36.1, HB(pz)₃Re⁺).

Results and discussion

The aminooxycarbene complex cis-Re(CO)₄(Br)(=COCH₂CH₂NH) (I) was prepared previously [2] by reaction of Re(CO)₅Br with aziridine and BrCH₂CH₂NH₃⁺ Br⁻ in CH₃CN at room temperature for 15 min (eq. 1). We now find that refluxing this mixture for 5 h with additional aziridine yields (76%) the bis(carbene) complex, II, eq. 2. It seems that both aziridine and BrCH₂CH₂NH₃⁺ Br⁻ are required in

$$\operatorname{Re(CO)}_{5}\operatorname{Br} + 2 \operatorname{HN} \longrightarrow \operatorname{BrCH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{2} \times \operatorname{HBr} \operatorname{fac-Re(CO)}_{3}(\operatorname{Br})(=\operatorname{COCH}_{2}\operatorname{CH}_{2}\operatorname{NH})_{2} (2)$$
(II)

Table 1 IR data for the complexes in CH₂Cl₂ solvent

Complex	IR: $\nu(CO)$ (cm ⁻¹)
$\overline{cis-\text{Re}(\text{CO})_4(\text{Br})(=COCH_2CH_2NH)(I)}$	2115m, 2009vs, 1941s
fac -Re(CO) ₃ (Br)(= $\overrightarrow{COCH_2CH_2NH}$) ₂ (II)	2040vs, 1939s, 1904s
fac-Re(CO) ₃ (PPh ₃)(Br)(=COCH ₂ CH ₂ NH) (III)	2039vs, 1946s, 1905s
fac-Re(CO) ₃ (PPh ₃)(Br)[=COCH ₂ CH ₂ N(CH ₃)] (IV)	2038vs, 1943s, 1904s
$cis-Re(CO)_4(Br)$ [=COCH ₂ CH ₂ N(CH ₃)](V)	2113m, 2015s, 1999s, 1940s
$cis-Re(CO)_4(CH_3) = COCH_2CH_2N(CH_3)](VI)$	2079m, 1975s, 1964s, 1915s
$fac-[\eta^2-HB(pz)_3]Re(CO)_3(=COCH_2CH_2NH)$ (VII)	2033s, 1930s, 1894s
$[\eta^3 - HB(pz)_3]Re(CO)_2 = COCH_2CH_2NH)$ (VIII)	1923s, 1829s

order to obtain maximum yields of I or II from the reaction. If the reaction is performed by generating aziridine in situ from $BrCH_2CH_2NH_3^+ Br^-$ and NaH (2 equiv.), some Re(CO)₅Br remains unreacted even after stirring for 4 days in CH₃CN at room temperature. When this reaction is carried out in refluxing CH₃CN for 30 min, all of the Re(CO)₅Br reacts to give a mixture of I and II. IR spectra taken during the reaction in eq. 2 show the presence of Re(CO)₄(Br)(= $COCH_2CH_2NH$) (I) as an intermediate which converts to the biscarbene compound, II, by further reaction with $HNCH_2CH_2$. The 3 nearly equally-intense ν (CO) absorptions in the IR spectrum of II (Table 1) indicate a facial geometry for II. A similar biscarbene complex, Mn(CO)₃(Br)(= $COCH_2CH_2NH$)₂, has been synthesized from Mn(CO)₅Br and two equivalents of $CNCH_2CH_2OH$ in Et₂O at room temperature for 1 d [8]. The IR spectrum of Mn(CO)₃(Br)(= $COCH_2CH_2NH$)₂ (ν (CO)(KBr) 2018 vs, 1932 vs, 1905 sh, 1898 vs cm⁻¹) is similar to that of compound II (Table 1).

The reaction (eq. 3) of I with an equimolar amount of PPh_3 in refluxing toluene

$$Re(CO)_{4}(Br)(=\overline{COCH_{2}CH_{2}NH}) + PPh_{3} \xrightarrow{\text{toluene}}$$
(I)
$$fac-Re(CO)_{3}(PPh_{3})(Br)(=\overline{COCH_{2}CH_{2}NH}) + CO \quad (3)$$
(III)

gives fac-Re(CO)₃(PPh₃)(Br)(=COCH₂CH₂NH) (II) in 96% yield within 15 min. As for II, the 3 ν (CO) bands in the IR spectrum (Table 1) of III indicate that it also has a facial structure; the spectrum is also very similar to that of the previously reported fac-Re(CO)₃(PPh₃)(Br)(=COCH₂CH₂O) (2038s, 1958s, 1906s cm⁻¹) [9]. The similarity of the ν (CO) frequencies for II and III suggest that the =COCH₂CH₂NH and PPh₃ ligands have comparable electronic properties, as has been noted previously [10]. The asymmetric Re center in III causes the protons in the carbene ligand to be diastereotopic and give an ABCD pattern in the ¹H NMR spectrum; thus, four multiplets are observed at 2.88, 3.40, 3.94, 4.44 ppm (Table 2). In the ¹³C NMR spectrum of III (Table 3) the doublet (²J(PC) 60.1 Hz) at 189.19 ppm is assigned to the CO *trans* to PPh₃, and the other two doublets at 194.59 and 189.31 ppm with coupling constants of 8.60 and 7.39 Hz are assigned to the CO ligands *cis* to the PPh₃. In other Re¹ complexes, Re(CO)₄(dppe)⁺, Re(CO)₃(dppe)[=C(OEt)(SiPh₃)]⁺

NCH ₂	OCH ₂	NH	Others
3.80 (t) ^b	4.77 (t) ^b	9.05 (br)	
3.77 (m)	4.66 (m)	8.93 (br)	
3.40 (m)	4.44 (m)	8.63 (br)	7.66 (m), 7.39(m) (PPh ₃)
2.88 (m)	3.94 (m)		
3.34 (m)	4.18 (m)		3.69 (s) (NCH ₃)
3.18 (m)	3.52 (m)		7.60 (m), 7.39 (m) (PPh ₃)
3.81 (t) ^c	4.65 (t) ^c		3.58 (s) (NCH ₃)
$3.70(t)^{d}$	$4.56(t)^{d}$		-0.46 (s) (ReCH ₃)
- /			$3.39(s)(NCH_3)$
3.68 (m)	4.57 (m)	9.26 (br)	7.36 (m) (H(3) and H(5) of pz)
			6.18 (m) (H(4) of pz)
3.72 (t) ^e	$4.50(t)^{e}$	8.16 (br)	7.80 (d, 1H) f , 7.67 (d, 2H) f
			(H(3) of pz); 6.19 (t, 3H) ^g
			(H(4) of pz); 7.77 (d, 2H) ^h , 7.74
			$(d, 1H)^{h}$ (H(5)) of pz)
	3.80 (t) b 3.77 (m) 3.40 (m) 2.88 (m) 3.34 (m) 3.18 (m) 3.81 (t) c 3.70 (t) d 3.68 (m) 3.72 (t) e	11212 00012 $3.80 (t) = 4.77 (t) = 5.000 t^2$ $4.77 (t) = 5.000 t^2$ $3.77 (m)$ $4.66 (m)$ $3.40 (m)$ $4.44 (m)$ $2.88 (m)$ $3.94 (m)$ $3.34 (m)$ $4.18 (m)$ $3.34 (m)$ $4.18 (m)$ $3.18 (m)$ $3.52 (m)$ $3.81 (t) = 4.65 (t) = 3.70 (t) = 4.56 (t) = 4.56 (t) = 4.56 (t) = 4.56 (t) = 4.50 (t)$	1122 02112 111 3.80 (t) ^b 4.77 (t) ^b 9.05 (br) 3.77 (m) 4.66 (m) 8.93 (br) 3.40 (m) 4.44 (m) 8.63 (br) 2.88 (m) 3.94 (m) 3.34 (m) 4.18 (m) 3.18 (m) 3.52 (m) 3.81 (t) ^c 4.65 (t) ^c 3.70 (t) ^d 4.56 (t) ^d 3.68 (m) 4.57 (m) 9.26 (br) 3.72 (t) ^e 4.50 (t) ^e 8.16 (br)

				_
¹ H NMR data	for the complexes	in CDCl ₃	solvent at room	temperature ^a

^a Chemical shifts in δ (relative to Si(CH₃)₄) and coupling constants in Hz. ^b J 9.77 Hz. ^c J 9.89 Hz. ^d J 9.74 Hz. ^e J 9.06 Hz. ^f J 1.47 Hz. ^g J 2.06 Hz. ^h J 2.22 Hz. ⁱ acetone-d₆ solvent.

and $\text{Re(CO)}_3(\text{dppe})(\text{COSiPh}_3)$. ¹³CO coupling constants to *cis*- and *trans*-phosphines are 6–9 and 40–60 Hz, respectively [11].

The neutral imine complex, $CpFe(CO)_2(C=NCH_2CH_2O)$, can be produced by deprotonation of the aminooxycarbene, $CpFe(CO)_2(=COCH_2CH_2NH)^+ BF_4^-$, in CH_2Cl_2 by K_2CO_3 or NaH [10]; this imine complex reacts with electrophiles (E⁺) [12] (e.g., $Me_3O^+ PF_6^-$ or allyl bromide) yielding the *N*-alkyl carbene compounds (eq. 4). Similarly, the diaminocarbene *trans*-{(PPh_3)_2Pt[$CN(p-MeC_6H_4)CH_2CH_2N-$ (H)]Br}BF_4 reacts with n-BuLi at -8° C to give the intermediate imino complex [$M=COCH_2CH_2NH$]⁺ $\xrightarrow{:B}_{-HB^+} MC=NCH_2CH_2O \xrightarrow{E^+} [M=COCH_2CH_2NE]^+$ (4)

trans-{(PPh₃)₂Pt[CN(p-MeC₆H₄)CH₂CH₂N]Br} which rapidly reacts with allyl bromide or propargyl bromide to afford the corresponding N-substituted products [13]. Attempts to deprotonate the carbene nitrogen atoms in Re(CO)₄(Br)-(=COCH₂CH₂NH) (I) with the bases, NaH, LiAlH₄, NaN(SiMe₃)₂ and Re(CO)₃-(PPh₃)(Br)(=COCH₂CH₂NH) (III) with NaH were unsuccessful. However, I is deprotonated by n-BuLi, PhLi or NaNp and III is deprotonated by n-BuLi to produce the imine complexes, Re(CO)₄(Br)($\overline{C=NCH_2CH_2O}$)⁻ Li⁺ and Re(CO)₃-(PPh₃)(Br)($\overline{C=NCH_2CH_2O}$)⁻ Li⁺ (eq. 5). These anionic imine compounds have IR spectra with ν (CO) relative intensities similar to their aminooxycarbene

$$Re(CO)_{3}(L)(Br)(=\overline{COCH_{2}CH_{2}NH}) \xrightarrow{n-BuLi} Re(CO)_{3}(L)(Br)(\overline{C=NCH_{2}CH_{2}O})^{-} \xrightarrow{Me_{3}O^{+}} fac-Re(CO)_{3}(L)(Br)[=\overline{COCH_{2}CH_{2}N}(CH_{3})] (IV: L = PPh_{3}; V: L = CO)$$
(5)

precursors (I and III), but the ν (CO) positions are about 15–20 cm⁻¹ lower.

Table 2

Complex	Carbene C	Carbonyl	OCH ₂	NCH ₂	Others
1 *	208.19	188.60	73.24	45.59	
		186.09			
		185.13			
11 °	217.18	193.12	71.94	44.36	
		192.72			
		188.81			
III c	216.88(d) e	194.59 (d) [/]	71.46	43.48	133,36 (d)
		189.19 (d) ^g			132.72, 132.13
		189.31 (d) ^h			129.82
					127.74 (d) (PPh ₃)
IV ^d	213.02 (d) ⁱ	194.65 (d) ^j	70.74	52.33	37.94 (NCH ₃);
		191.80 (d) ^k			134.81 (d)
		191,13 (d) ¹			134.46,
					134.26, 130.85
					128.82 (d) (PPh ₃)
v	208.56	185.51	70.30	51.32	37.49 (NCH ₃)
		184,82 m			
		183.24			
VI	213.15	191.18 <i>"</i> "	69.95	50.66	37.02 (NCH ₂)
		190.19			- 32.73 (ReCH ₂)
		187.98			
VII ^d	219.40	196.52	72.05	54.86	146.90, 146.02,
	218.90	196.26	71.51	45.14	144.93, 142.39,
		194.45			141.67 (C(3) of pz);
		191.84			137.93, 136.12,
					134.66, 132.03
					(C(5) of pz);
					107.64, 106.70,
					106.51, 105.43,
					105.33, 104.88
					(C(4) of pz)
VIII ^d	209.69	not observed	70.63	45.59	146.39, 144.74
					(C(3) of pz);
					135.42 (C(5) of pz);
					106.57, 106.36
					$(C(4) \circ f \mathbf{p}_{7})$

Table 3 13 C NMR data for the complexes in CDCl₃ solvent at room temperature ^a

^a Chemical shifts in δ (relative to Si(CH₃)₄) and coupling constants in Hz. ^b In CD₃CN solvent. ^c In CD₂Cl₂ solvent. ^d In acetone-d₆ solvent. ^e J(PC) 8.76 Hz. ^f J(PC) 8.60 Hz, CO cis to PPh₃. ^g J(PC) 60.1 Hz, CO trans to PPh₃. ^h J(PC) 7.39 Hz, CO cis to PPh₃. ⁱ J(PC) 9.90 Hz, cis to PPh₃. ^j J(PC) 6.75 Hz, CO cis to PPh₃. ^k J(PC) 235 Hz, CO trans to PPh₃. ^l J(PC) 7.40 Hz, CO cis to PPh₃. ^m Two CO groups trans to each other.

The N atom of the anionic imine complexes reacts with $Me_3O^+ BF_4^-$ to give the N-methyl carbenes, $Re(CO)_4(Br)(=COCH_2CH_2NMe)$ (V) and $Re(CO)_3$ -(PPh₃)(Br)-(=COCH₂CH₂NMe) (IV) (eq. 5) in 64 and 78% isolated yields. The CH₂CH₂ region of the ¹H NMR spectrum of $Re(CO)_3(PPh_3)(Br)(=COCH_2CH_2NMe)$ (IV) shows a pattern similar to that in III (4 sets of multiplets at 3.18, 3.34, 3.52 and 4.18 ppm) as expected for an ABCD system. The 3 ν (CO) bands of IV and 4 ν (CO) bands of V in their IR spectra (Table 1) suggest that they have *facial* and *cis* structures, respectively, as for the related complexes I and III. The ¹³C NMR spectrum of V has 3 carbonyl peaks, 185.51, 184.82 and 183.24 ppm, with approximate relative intensities of 1/2/1.

The reaction of $\operatorname{Re}(\operatorname{CO})_4(\operatorname{Br})(=\operatorname{COCH}_2\operatorname{CH}_2\operatorname{NH})$ with n-BuLi gives not only the deprotonated anionic imine compound $\operatorname{Re}(\operatorname{CO})_4(\operatorname{Br})(\operatorname{C}=\operatorname{NCH}_2\operatorname{CH}_2\operatorname{O})^-$ Li⁺, but apparently also the reduced $\operatorname{Re}(\operatorname{CO})_4(=\operatorname{COCH}_2\operatorname{CH}_2\operatorname{NH})^-$ Li⁺ product, as suggested by the generation of a small amount (10%) of a byproduct, $\operatorname{Re}(\operatorname{CO})_4(\operatorname{CH}_3)(=\operatorname{COCH}_2\operatorname{CH}_2\operatorname{NH})$ which was identified by its IR and ¹H NMR spectra ($\nu(\operatorname{CO})$, in $\operatorname{CH}_2\operatorname{Cl}_2$: 2068m, 1954vs, 1919s cm⁻¹; δ , in CDCl₃: 0.06 (s, 3H, ReMe); 3.70 (t, 2H, J 9.2 Hz, NCH₂); 4.58 (t, 2H, J 9.5 Hz, OCH₂) 7.44 (br, 1H, NH) ppm).

The reaction of $\text{Re}(\text{CO})_4(\text{Br})(=\text{COCH}_2\text{CH}_2\text{NMe})$ (V) and methyl lithium in THF at $-78\,^\circ\text{C}$ generates $\text{Re}(\text{CO})_4(=\text{COCH}_2\text{CH}_2\text{NMe})^-$ Li⁺ whose IR spectrum ($\nu(\text{CO})$: 2002s, 1910s, 1872vs cm⁻¹) is similar to that reported previously for $\text{Mn}(\text{CO})_4(\text{PPh}_3)^-$ Na⁺ [14] at 1941s, 1846ms, 1815vs cm⁻¹. This anionic intermediate reacts with MeI to give $\text{Re}(\text{CO})_4(\text{CH}_3)(=\text{COCH}_2\text{CH}_2\text{NMe})$ (VI) in 64% yield (eq. 6). The presence of 4 $\nu(\text{CO})$ bands in the IR spectrum (Table 1) of VI indicates that it has a *cis* structure.

$$\begin{array}{c} \operatorname{Re}(\operatorname{CO})_{4}(\operatorname{Br})\left[= \overbrace{\operatorname{COCH}_{2}\operatorname{CH}_{2}\operatorname{N}(\operatorname{CH}_{3})}^{\operatorname{CH}_{3}\operatorname{Li}}\right) \xrightarrow{\operatorname{CH}_{3}\operatorname{Li}} \\ (\operatorname{V}) \end{array}$$

$$\operatorname{Re}(\operatorname{CO})_{4} \left[= \overline{\operatorname{COCH}_{2}\operatorname{CH}_{2}\operatorname{N}}(\operatorname{CH}_{3}) \right]^{-} \operatorname{Li}^{+} \xrightarrow{\operatorname{Mel}} \rightarrow$$

$$cis-\text{Re}(\text{CO})_4(\text{CH}_3)[=\text{COCH}_2\text{CH}_2\text{N}(\text{CH}_3)] \qquad (6)$$
(VI)

Recently there has been considerable theoretical [15] and synthetic [16] interest in carbene-alkyl complexes as models for possible species present on catalyst surfaces in the Fischer-Tropsch reaction. There are, however, only two known examples of carbene-alkyl complexes also containing CO ligands, $Ir(CI)(CO)(PPhMe_2)_2(Me)$ -(=C(OMe)Me)⁺ PF₆⁻ [17] and the dinuclear Me(CO)₃Re(μ -PPh₂)₂W(CO)₃-(=C(OEt)Me) [18]. Thus, we were interested in exploring the possibility of CH₃ migration onto the carbene or CO ligand in complex VI. Unfortunately, refluxing PPh₃ or PMe₃ with VI in benzene generates very low yields of only phosphine-substituted products, possibly *fac*-Re(CO)₃(PR₃)(CH₃)(=COCH₂CH₂NMe), although efforts to characterize it were unsuccessful. Also photolysis of PPh₃ of PMe₃ with VI in THF gives primarily decomposition products. The lack of CH₃ migration in this

Fig. 1. Possible isomers of $[\eta^2-B(pz)_4](\eta^5-C_5H_5)(CO)_2Mo$.

system may reflect the unreactivity of $MeRe(CO)_5$ which does not give the acyl complex $MeCORe(CO)_5$ even under 320 atm of CO at 140°C; further heating to 200°C leads only to $Re_2(CO)_{10}$ [19a]. There also appear to be no reports of CH_3 migration in reactions of $MeRe(CO)_5$ with phosphines [19b,c].

The reaction of $\text{Re}(\text{CO})_4(\text{Br})(=\overline{\text{COCH}_2\text{CH}_2\text{NH}})$ (I) with $\text{Na}(\text{C}_5\text{H}_5)$ in refluxing THF gives only the deprotonated product $\text{Re}(\text{CO})_4(\text{Br})(\overline{\text{C}=\text{NCH}_2\text{CH}_2\text{O}})^-$ Na⁺, as determined by the IR spectrum of the solution. When I reacts with Li⁺ (C₅Me₅)⁻, no stable complex could be isolated. However, complex I reacts with the hydrotris(pyrazolyl)borate ligand, HB(pz)₃⁻, in refluxing THF for 18 h to yield $[\eta^2\text{-HB}(\text{pz})_3]\text{Re}(\text{CO})_3(=\overline{\text{COCH}_2\text{CH}_2\text{NH}})$ (VII) (eq. 7). The IR spectrum of VII

$$K[HB(pz)_{3}] + Re(CO)_{4}(Br)(=\overline{COCH_{2}CH_{2}NH}) \xrightarrow{THF} (I)$$

$$(I)$$

$$[\eta^{2}-HB(pz)_{3}]Re(CO)_{3}(=\overline{COCH_{2}CH_{2}NH}) + KBr + CO \qquad (7)$$

$$(VII)$$

exhibits three strong bands of approximately equal intensity at 2033, 1930 and 1894 cm^{-1} , which is consistent with a *facial* arrangement of the three CO ligands. In order to accommodate the 18 electron rule, the presence of three carbonyls and one carbene ligand requires that only two of the three pyrazolyl groups in $HB(pz)_3^{-1}$ coordinate to the metal which leaves the third one uncoordinated. Although the IR spectrum in the $\nu(CO)$ region of VII is consistent with the presence of only one fac isomer, the four CO and two carbene-C resonances in the ¹³C NMR spectrum suggest the presence of two isomers. The structures of these isomers are not entirely clear. Previously, two isomers were observed [20] in NMR spectra of $[\eta^2-B(pz)_4](\eta^5-$ Cp)(CO)₂Mo and attributed to the two structures in Fig. 1, resulting from the shallow boat configuration of the chelate ring. Similar structures were proposed [21] for the two observed isomers of $CpRu(\eta^2-HB(3,5-Me,pz)_1)(CO)$. It is possible that VII exists as similar isomers; however, the two isomers resulting from interchanging the non-coordinated H and pz groups on the B cannot be excluded. The ¹H NMR spectrum of VII at room temperature consists of multiplets at 3.68 and 4.57 ppm and a broad band at 9.26 ppm which can be assigned to the NCH₂CH₂O and NH protons of the aminooxycarbene group and a complex group of resonances between 6.0 and 8.0 ppm which are due to the protons on the pyrazolyl rings. The two multiplets for the OCH₂ and NCH₂ protons suggest that more than one isomer is present. The complicated pattern for H(3), H(4) and H(5) in the pyrazolyl ligand also suggests the presence of isomers.

Refluxing the bidentate derivative $[\eta^2-HB(pz)_3]Re(CO)_3(=COCH_2CH_2NH)$ in THF (2 days, no reaction) or dimethylformamide (1 day, decomposition) does not force the third pyrazolyl group to coordinate to the metal; however, when a THF solution of $[\eta^2-HB(pz)_3]Re(CO)_3(=COCH_2CH_2NH)$ is photolyzed with UV light, the tridentate $[\eta^3-HB(pz)_3]Re(CO)_2(=COCH_2CH_2NH)$ (VIII) is obtained (eq. 8).

The IR and ¹H NMR spectra of VIII are consistent with the presence of a tridentate pyrazolylborate ligand. The presence of 2 ν (CO) bands of approximately equal intensity at 1923 and 1829 cm⁻¹ indicates that the two CO ligands are *cis* to each other [22]. The ¹H NMR spectrum (Table 2) exhibits two sets of pyrazolyl resonances with an intensity ratio of 2/1. Assignments of the H(3), H(4) and H(5) protons were made following those of Trofimenko [21] and are given in Table 2. Attempts to convert VIII back to VII by reacting THF solutions of VIII with up to 35 atm of CO at 75°C yielded no evidence for the reformation of VII (the only metal carbonyl compound is starting material VIII).

Conclusion

The carbene ligand in cis-Re(CO)₄(Br)(=COCH₂CH₂NH) (I) is sufficiently stable that a variety of reactions can be performed on I without affecting the carbene ligand. The NH group maybe deprotonated and the resulting imine methylated (eq. 5). The CO ligands may be substituted by PPh₃ (eq. 3) or HB(pz)₃⁻ (eq. 7 and 8), and the Br ligand may be replaced in the N-methyl complex V by a methyl.

Acknowledgment

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

References

- 1 M.M. Singh and R.J. Angelici, Angew. Chem. Int. Ed. Engl., 22 (1983) 163; Angew. Chem. Suppl., 22 (1983) 184.
- 2 M.M. Singh and R.J. Angelici, Inorg. Chem., 23 (1984) 2699.
- 3 M.M. Singh and R.J. Angelici, Inorg. Chem., 23 (1984) 2691.
- 4 M.M. Singh and R.J. Angelici, Inorg. Chim. Acta, 100 (1985) 57.
- 5 J.C. Hileman, D.K. Huggins, and H.D. Kaesz, Inorg. Chem., 1 (1962) 933; S.P. Schmidt, W.C. Trogler, and F. Basolo, Inorg. Synth., 23 (1985) 41.
- 6 V.P. Wystrach, D.W. Kaiser, and F.C. Schaefer, J. Am. Chem. Soc., 77 (1955) 5915; ibid., 78 (1956) 1263.
- 7 D.F. Shriver and M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds, Wiley-Interscience, New York, 1986, p. 11.
- 8 W.P. Fehlhammer and U. Plaia, Z. Naturforsch. B, 41 (1986) 1005.
- 9 G.L. Miessler, S. Kim, R.A. Jacobson, and R.J. Angelici, Inorg. Chem., 26 (1987) 1690.
- 10 H. Motschi and R.J. Angelici, Organometallics, 1 (1982) 343.
- B.E. Mann and B.F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, 1981, p. 165-166.
- 12 L.K. Johnson and R.J. Angelici, Inorg. Chem., 26 (1987) 973.
- 13 R.A. Michelin, L. Zanotto, D. Braga, P. Sabatino, and R.J. Angelici, Inorg. Chem., 27 (1988) 93.
- 14 R.A. Faltynek and M.S. Wrighton, J. Am. Chem. Soc., 100 (1978) 2701.
- 15 T. Ziegler, L. Versluis, and V. Tschinke, J. Am. Chem. Soc., 108 (1986) 612.
- 16 For example: (a) H. Werner, H. Kletzin, A. Höhn, W. Paul, and W. Knaup, J. Organomet. Chem., 306 (1986) 227; (b) D.L. Thorn, Organometallics, 5 (1986) 1897.
- 17 H.C. Clark and K.J. Reimer, Inorg. Chem., 14 (1975) 2133.
- 18 W.C. Mercer, G.L. Geoffroy, A.L. Rheingold, Organometallics, 4 (1985) 1418.

- (a) R.B. King, A.D. King, Jr., M.Z. Iqbal, and C.C. Frazier, J. Am. Chem. Soc., 100 (1978) 1687; (b)
 A. Wojcicki, Adv. Organomet. Chem., 11 (1973) 87. (c) R.J. McKinney and H.P. Kaesz, J. Am. Chem. Soc., 97 (1975) 3066.
- 20 J.L. Calderon, F.A. Cotton, and A. Shaver, J. Organomet. Chem., 37 (1972) 127.
- 21 A.M. McNair, D.C. Boyd, and K.R. Mann, Organometallics, 5 (1986) 303.
- 22 B.J. Brisdon, J. Organomet. Chem., 125 (1977) 225; R.H Reimann and E. Singleton, J. Chem. Soc., Dalton Trans., (1973) 2658.
- 23 S. Trofimenko, Prog. Inorg. Chem., 34 (1986) 115.